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Abstract The applications of terahertz (THz) technology
can be greatly extended using non-diffractive beams with
unique field distributions and non-diffractive transmission
characteristics. Here, we design and experimentally
demonstrate a set of dual non-diffractive THz beam
generators based on an all-dielectric metasurface. Two
kinds of non-diffractive beams with dramatically opposite
focusing properties, Bessel beam and abruptly autofocus-
ing (AAF) beam, are considered. A Bessel beam with long-
distance non-diffractive characteristics and an AAF beam
with low energy during transmission and abruptly
increased energy near the focus are generated for x- and
y-polarized incident waves, respectively. These two kinds
of beams are characterized and the results agree well with
simulations. In addition, we show numerically that these
two kinds of beams can also carry orbital angular
momentum by further imposing proper angular phases in
the design. We believe that these metasurface-based beam
generators have great potential use in THz imaging,
communications, non-destructive evaluation, and many
other fields.

Keywords terahertz (THz) wave, all-dielectric metasur-
face, Bessel beam, abruptly autofocusing (AAF) beam,
vortex beam

1 Introduction

Terahertz (1 THz = 1012 Hz) waves usually refer to the
electromagnetic waves with a frequency in the range of
0.1–10 THz, which is a band between far-infrared light and
microwaves. With the development of generation [1–3]
and detection techniques [4], more research now focuses

on the applications of THz waves [5,6] and the develop-
ment of THz functional devices [7–9]. THz waves have a
low photon energy and are transparent to non-polar and
non-metallic materials, and many molecules have rota-
tional and low-vibrational lines in the THz band, so that
THz waves can be used in spectroscopy and imaging
[5,6,10], non-destructive testing [11], chemical analysis
[12], communications [13], and many other fields.
Gaussian beams are subject to diffraction, which limits

their applications in fields like optical tweezers, optical
imaging, laser fabrication. The emergence of diffraction-
free beams like Bessel beams [14] and Airy beams [15–
17], have greatly overcome this limitation. Bessel beams
are characterized by a propagation-invariant intensity
distribution over a long distance, and the electric field
distribution of such beams is described by a zeroth-order
Bessel function of the first kind, which consists of a central
lobe with high intensity and several side lobes. Thanks to
their properties of non-diffraction and self-reconstruction,
Bessel beams are especially useful in laser material
processing [18], optical microscopy [19], and optical
micromanipulation [20]. In the THz domain, Bessel beams
also find important applications in long depth-of-focus
imaging [21], detection [22], and tomography [23]. In
these applications, Bessel THz beams can alleviate the
problem of quick beam-spreading caused by the diffraction
of tightly-focused Gaussian beams. Airy beams are also
diffraction-free beams, but unlike Bessel beams, they
propagate along a curved patch. The main characteristics
of Airy beams are diffraction-free propagation, self-
bending, and self-recovery, making such beams valuable
tools in a wide range of fields such as optical tweezers [24],
light-sheet microscopy [25], and laser micromachining
[26]. Abruptly autofocusing (AAF) beams, also termed
circular Airy beams, have a unique feature of maintaining a
low intensity during propagation and this intensity
suddenly rises by several orders of magnitude at the
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focal point, which is just opposite to the long depth-of-
focus property of Bessel beams. AAF beams have a great
intensity contrast along the transmission path, so they are
widely used in laser ablation [27], microparticle trapping
[28], and multiscale photo-polymerization [29]. As the
power or intensity of THz sources rises, the AAF THz
beams are also expected to have important applications in
similar areas, such as in biomedical inspection to avoid
tissue damage and in imaging to elude obstacles, etc.
Metasurfaces are two-dimensional metamaterials con-

sisting of an array of subwavelength elements, which can
modulate the phase, amplitude, and polarization of the
incident electromagnetic wave [30–34]. They have been
widely used as metalenses [35], polarization controllers
[36], beam splitters [37], holographic plates [38], and other
functional devices. In addition, the flexible design of
metasurfaces allows them to be widely used to generate
non-diffractive beams, including Bessel beams [39–41],
Airy beams [42–44], and vector vortex beams [45,46].
They have also become an important method to fabricate
functional devices in the THz frequency range [47–50].
This is especially true for the case of generation of
diffraction-free beams and structured beams due to the lack
of devices like spatial light modulators which are often
used in the optical and infrared frequency ranges.
Compared with plasmonic metasurfaces with metallic
elements, metasurfaces based on dielectric materials (such
as the widely used silicon) as the building block suffer no
ohmic loss introduced by the metallic elements, so their
transmission efficiency is usually much higher [51,52]. In
addition, a great advantage of metasurfaces is that the
meta-atoms have many degrees of freedom such that the
metasurfaces can be designed to be multifunctional planar
devices.
In this work, we report a set of polarization-dependent

transmission-type all-silicon dielectric metasurfaces for the

generation of two different types of non-diffractive THz
beams, i.e., Bessel beams and AAF beams. These dual
non-diffractive THz beam generators are designed to
generate Bessel beams and AAF beams under x- and y-
polarized incidences, respectively. The focusing character-
istics of these two beams are opposite, so the metasurfaces
can control the transmitted THz waves depending on the
needs, and these metasurface-based beam generators will
contribute to a wider application of THz technology.

2 Design strategy

To realize the desired dual non-diffractive THz beam
generators, the meta-atoms of the designed metasurface are
polarization-dependent rectangular-shaped silicon pillars
on a silicon substrate, as schematically shown in Fig. 1(a).
These anisotropic meta-atoms act as rectangular wave-
guides, allow the phases of the incident x- and y-polarized
waves to be modulated separately [53]. The commercial
software CST MICROWAVE STUDIO is used to simulate
the response of the lossless silicon meta-atoms (nSi =
3.4496) for x- and y-polarized incident THz waves at 1
THz. The side lengths of the pillars lx and ly are from 30 to
135 mm, the height of the pillars is h = 200 mm, and the
period of the square unit cell is p = 150 mm. From the
simulation results, 64 meta-atoms in total are selected to
achieve the phase modulation within the 0 to 2π range at an
interval of π/4 for incident THz waves with x- and y-
polarized incidences, that is, 8 side lengths are used for
each polarization. To illustrate the design procedure, we
can consider putting the 64 meta-atoms in an 8 � 8 table,
where the row of the table corresponds to the phase delay
for x-polarized incident light (0, π/4, π/2, 3π/4, π, 5π/4,
3π/2, 7π/4) and the column corresponds to the phase delay
for y-polarized incident light (0, π/4, π/2, 3π/4, π, 5π/4,

Fig. 1 (a) Schematic of the rectangular-shaped pillar unit cell of the metasurface-based dual beam generator, which is made of silicon.
The period of the square unit cell is p, the height is h, and the sides are lx and ly, respectively. (b) Scanning electron microcopy (SEM)
image of the fabricated metasurface. The inset shows a zoomed portion
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3π/2, 7π/4). The phase delays φx and φy required at point (x,
y) can be calculated as described later, and by matching
this set of data to the closest position in the table, the meta-
atom that should be selected at point (x, y) can be
determined. Figure 1(b) shows a scanning electron
microcopy (SEM) image of the fabricated metasurface.
First, we consider the case of x-polarized incidence,

which will generate a Bessel beam in our design. The
phase profile for the Bessel beam is described by [54]

φx x,yð Þ ¼ 2π –
2π
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

NA, (1)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ r is the radius in polar coordinates, l =
300 mm is the wavelength of the incident THz wave, and
NA is the numerical aperture of the equivalent axicon for
the metasurface beam generator, related to the base angle α
of the axicon by

NA ¼ sinðsin – 1ðnmatsinαÞ – αÞ: (2)

Here nmat is the refractive index of the constituent
material, chosen as nSi = 3.4496 in this work.
According to Eq. (1), φx(0, 0) = 2π, which is equivalent

to φx(0, 0) = 0, the period of the pillars is p = 150 mm, and
the phase value of the silicon pillar closest to the center is
φx(150, 0) = –π/4 (r = 150 mm in this case). By substituting
the above data into Eq. (1), we can get NA = 0.25. Then
substituting this NA value into Eq. (2) yields α = 5.75°.
Thus, it can be seen that the metasurface designed with the
above parameters can be equivalent to an axicon with a
base angle α = 5.75° for the x-polarized incident beam.
The diffraction-free transmission distance Zmax of the

zeroth-order Bessel beam can be derived as [21]

Zmax ¼
ω0

tan
�

ðnmat – 1Þα
�, (3)

whereω0 is the radius of the incident Gaussian beam waist.
When ω0 = 1.5 mm is assumed, Zmax = 6 mm will be
obtained.
The full width at half maximum (FWHM) of the zeroth-

order Bessel beam can be derived as [54]

FWHM ¼ 0:358l

NA
: (4)

Here l = 300 mm, NA = 0.25, so we can get FWHM=
429.6 mm.
Figures 2(a) and 2(b) show the simulation results of a

generated Bessel beam, where Zmax is very close to 6 mm,
and the FWHM is 447.7 mm, and they conform well to the
theoretical values.
In the above simulation, ω0 = 1.5 mm, that is, the

diameter of the beam waist is 3 mm, so the corresponding
number of working meta-atoms is 21 � 21. According to
Eq. (3), the non-diffraction distance Zmax of the Bessel
beam generated is directly proportional to the radius of the

incident Gaussian beam. Thus, the size of the incident
beam allows for easy tuning of Zmax. In Figs. 2(c) and 2(d),
the simulation of another Bessel beam with Zmax = 10 mm
is shown. In this case, the incident Gaussian beam radius is
2.5 mm and the number of required meta-atoms would be
35 � 35. In the fabricated devices, the samples are large
enough to take this tuning possibility into account. It
should also be pointed out that the focus of the AAF beam
is not affected by the incident beam size.
Then we consider the case of y-polarized incidence,

where an AAF beam will be generated. The AAF beam can
be generated by an airy beam whose trajectory is c(z) = r0
– azm rotated around the transmission z axis [55]. Here r0
is the radius of the initial annulus-type spot of the AAF
beam, a is a parameter which determines the trajectory of
the beam and is far less than 1, and m is the order of the
trajectory of the Airy beam.
The phase profile required for the AAF beam is [56]

φy ¼ –
2π
l

m2

ð2m – 1Þðm – 1Þ½ðm – 1Þa�
1
mðr – r0Þ

2m – 1
m ,  r0£r,

0,  r < r0:

8

<

:

(5)

AAF beams with different trajectories can be realized
with the choice of the parameters a, m, and r0. According
to the trajectory equation, when c(z) = 0, all the Airy beams
that form the AAF beam focus on one point. This value of z
represents the focal length of the AAF beam and can be
derived as

zc ¼
r0
a

� �

1
m : (6)

According to Eq. (6), the focal position of the AAF
beams can be adjusted by r0 and a. As an example, the case
of c(z) = 350 – 5.6 � 10–5z2 is considered, and the focal
length is determined to be zc = 2.5 mm. Figures 2(e) and
2(f) show the simulation results, where it can be seen that
the focal position is consistent with the theoretical
calculation. Note that the focal length determined above
is from the output surface of the device, while the distance
z in the figure is measured from the bottom of the
pillars and hence the focus will be around 2.7 mm in
the simulation considering the height of the pillars
(h = 200 mm).

3 Experimental results and discussion

To experimentally demonstrate the feasibility of the dual
non-diffractive THz beam generator, all-dielectric metasur-
face samples based on silicon are fabricated by optical
lithography followed by deep reactive ion etching [57].
The metasurface samples are composed of 41 � 41 silicon
pillars to allow for a wide tuning the propagation-invariant
distance of the Bessel beam, the thickness of the substrate
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is 800 mm, the size of the metasurface samples is 6.15 mm
� 6.15 mm, and the working frequency in the whole work
is 1 THz. To characterize the fabricated dual non-
diffractive THz beam generators, a near-field scanning
THz microscopy system is used, which can also measure
the far-field distributions, as illustrated in Fig. 3 [58]. We
use a 1550 nm femtosecond fiber laser as the light source
and a beam splitter to divide its output into two beams. One
beam passes through a piece of fiber and is back-coupled
into free space, then this beam is focused on a probe which
is based on low-temperature-grown GaAs. This part of the

optical path is used to detect the THz signals. The
frequency doubling module is used to convert the light to
780 nm to excite the carriers in GaAs. The other beam
passes through an optical fiber delay line and then is
incident on the photoconductive antenna fabricated on an
InGaAs/InAlAs substrate. This part of the optical path is
used to generate the THz radiation. In the measurement,
the THz radiation is incident onto the substrate side of the
metasurface, and the metasurface is placed on a three-
dimensional translational sample holder that can be
translated in the x, y, and z directions. On the other side

Fig. 2 Simulated performance of the dual non-diffractive THz beam generator. (a) and (b) Simulated intensity profiles for a Bessel beam
with Zmax = 6 mm in the x-z (y = 0) and x-y cross-sections (z = 4 mm), respectively, under x-polarized incidence. (c) and (d) Simulated
intensity profiles for a Bessel beam with Zmax = 10 mm in the x-z (y = 0) and x-y cross-sections (z = 7 mm), respectively, under x-polarized
incidence. (e) and (f) Simulated intensity profiles for the AAF beam in the x-z (y = 0) and x-y cross-sections (z = 2.5 mm), respectively,
under y-polarized incidence
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of the metasurface, a THz probe with a two-dimensional
translational detector that can be translated in the x and y
directions is used to scan point by point the electric field of
the transmitted THz waves. The beam waist radius of the
incident THz waves is 1.5 mm, and the waves are linearly
polarized, and the x and y polarization states of the incident
radiation can be switched by rotating the metasurface
device by 90°. The current dumping amplifier and lock-in
amplifier enable the probe to collect the electrical signal,
and then send the collected time-domain data to the
computer for processing, after which the measured electric
field distribution can be obtained.
Figure 4(a) shows the x-z plane intensity distribution of

the Bessel beam generated by the metasurface for x-
polarized incidence, and Fig. 4(b) shows the x-y cross-
section distribution of the Bessel beam at a transmission
distance of 4 mm. It can be observed that the diffraction-
free propagation distance (Zmax) and the FWHM of the
Bessel beam generated in the experiment are consistent
with the theoretical prediction and simulation results: Zmax

is approximately 6 mm, and the FWHM is 414.5 mm.
When the polarization state of the incident radiation is
changed to y-polarization, an AAF beam is generated
instead by the metasurface, and Fig. 4(c) shows its
intensity distribution in the x-z plane. As can be seen, the
focal position of the AAF beam coincides with the
theoretical prediction and simulation results. Figure 4(d)
shows the x-y cross-section distribution of the AAF beam
at a transmission distance 2.5 mm. Again, good agreement
with Fig. 2(d) is observed.
The parameters of the Bessel beams and AAF beams can

be easily tuned. As a further illustration, we show how the
focal length of the AAF beams can be adjusted by
changing the parameters of the trajectory c(z). As shown in

Fig. 5(a), when the trajectory is c(z) = 500 – 4.08163 �
10–5z2, an AAF beam with a focal length of 3.5 mm is
generated. Figure 5(b) shows the x-z plane intensity
distribution of an AAF beam with c(z) = 600 – 2.96296
� 10–5z2, and the focal length of the AAF beam is changed
to 4.5 mm. Figures 5(c) and 5(d) show the corresponding
experimental results of the above two designs.
Additionally, an angular phase term nφ for an nth-order

vortex beam can be added to the above radial phase
distribution for the Bessel and AAF beams, and then the
nth-order Bessel beam and the nth-order AAF vortex beam
carrying orbital angular momentum can be generated
[54,59]. Here, we design a non-diffractive beam generator
that can respectively generate a 1st-order Bessel beam
under x-polarized incidence and a 2nd-order AAF vortex
beam under y-polarized incidence. Under x-polarized
incidence, Figs. 6(a) and 6(b) show the x-z and x-y cross-
sections (z = 7 mm) intensity profile of the 1st-order Bessel
beam with a diffraction-free distance of 10 mm, where we
can see that the center of the higher-order Bessel beam is a
dark spot. The diffraction-free distance can be adjusted by
changing the waist radius of the incident beam, and in the
case of Fig. 6(a) the waist of the incident beam is ω0 = 2.5
mm. Under y-polarized incidence, Figs. 6(c) and 6(d) show
the x-z and x-y cross-sections (z = 3.85 mm) intensity
profile of the 2nd-order AAF vortex beam, whose focal
length is 3.5 mm. In Fig. 6(c), the maximum intensity of
the AAF vortex beam is located at 3.85 mm. Considering
the height of the pillars being 0.2 mm that is included in the
z distance, the corresponding theoretical focal position by
Eq. (6) would be 3.7 mm, resulting in an error of 0.15 mm,
which is within an acceptable range. The focal spot of the
AAF vortex beam is an annulus in this case.
To characterize the efficiency of the proposed beam

Fig. 3 Illustration of experimental setup. 3-D TSH: three-dimensional translational sample holder; 2-D TD: two-dimensional
translational detector
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Fig. 4 Experimental results of the dual non-diffractive THz beam generator. (a) and (b) Measured normalized intensity distributions for
the Bessel beam in the x-z (y = 0) and x-y cross-sections (z = 4 mm), respectively, under x-polarized incidence. (c) and (d) Measured
normalized intensity distributions for the AAF beam in the x-z (y = 0) and x-y cross-sections (z = 2.5 mm), respectively, under y-polarized
incidence

Fig. 5 (a) and (b) Simulated intensity profiles for AAF beams with two different focal lengths (zc = 3.5 mm and zc = 4.5 mm,
respectively) in the x-z cross-section (y = 0). (c) and (d) Corresponding experimental results
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generators, we calculate the intensity of the wave
transmitted through the silicon substrate as the reference
Iref. The efficiency of the Bessel beam generator is then
calculated as EBB = IBB/Iref = 93.3%, and the efficiency of
the AAF beam generator EAAF = IAAF/Iref = 90.4%, where
IBB and IAAF represent the intensity distributions of the
Bessel and AAF beams after the devices, respectively.
The designed metasurface beam generator is based on

the propagation phase, which is supposed to control
linearly polarized waves. The metasurface designed by this
design method is a narrowband device. The designed
working frequency in this work is 1 THz, and the device
can work within the range of about 0.95–1.05 THz.
Geometric phase, also known as called Pancharatnam-
Berry phase, can be used (even in combination with
propagation phase) to control circularly polarized waves
[44,60,61], and the device is often broadband.

4 Conclusions

All-silicon dielectric metasurfaces that can produce two
different types of non-diffractive THz beams are proposed
and demonstrated. By changing the polarization state of
the incident waves, the transmission can be switched
between two non-diffractive THz beams with dramatically

different focusing characteristics, that is, a Bessel beam
with a long-distance non-diffractive propagation feature
and an AAF beam with low energy during transmission but
abruptly increased energy near the focus will be generated
for x- and y-polarized incident waves, respectively. These
two kinds of beams are characterized and the results agree
well with simulations. Such multifunctional metadevices
are compatible with current standard fabrication technol-
ogy and suited in different application scenarios. We
believe that these metasurface-based dual non-diffractive
THz beam generators have great potential use in THz
imaging, non-destructive testing, biomedical science, and
many other fields.
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