
Research Article Vol. 30, No. 16 / 1 Aug 2022 / Optics Express 29507

Caustics of the axially symmetric vortex beams:
analysis and engineering

NA XIAO,1 CHEN XIE,1,* FRANÇOIS COURVOISIER,2 AND
MINGLIE HU1

1Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Science and Technology of
Ministry of Education, College of Precision Instruments and Opto-electronics Engineering, Tianjin
University, 300072 Tianjin, China
2FEMTO-ST Institute, Université de Bourgogne-Franche-Comté UMR-6174, 25030 Besancon, France
*xie_chen@tju.edu.cn

Abstract: We demonstrate that our theoretical scheme developed in the previous study on the
caustics of the abruptly autofocusing vortex beams [Xiao et al., Opt. Express 29, 19975 (2021)]
is universal for all the axially symmetric vortex beams. Further analyses based on this method
show the complex compositions of the vortex caustics in real space. Fine features of the global
caustics are well reproduced, including their deviations from the trajectories of the host beams.
Besides, we also show the possibility of tailoring the vortex caustics in paraxial optics based
on our theory. The excellent agreements of our theoretical results with both numerical and
experimental results confirm the validity of this scheme.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Vortex beams are structured light fields with doughnut-shaped spatial profiles and phase
singularities. Their distinctive feature is the presence of the helical phase fronts described as exp
(ilθ), where l is the so-called topological charge and θ is the azimuthal angle [1]. Among the
vortex beams, the spiral vortex beams are shown to be strong in terms of the structural stability
[2,3]. Due to these notable properties, vortex beams have attracted widespread interests and
play critical roles in various applications, like particle micromanipulation [4,5], microscopy [6],
material processing [7–9], and optical communication [10,11]. By superimposing the helical
phase on the axially symmetric phases of different host beams like the Gaussian beam, the Bessel
beam and the abruptly autofocusing beam, a series of axially symmetric vortex beams (ASVBs)
are investigated [12–15]. In this way, vortex beams can be adapted with diverse intensity tubes in
focusing, diverging and non-diffracting shapes.

Two major schemes are basically implemented to interpret and engineer the light fields. The
integral-based scheme is the mostly-used method, involving with the diffraction integral using the
stationary phase method [16–19]. In some cases, the use of this method induces “singular points”
whose intensity tends to infinity [20]. Various asymptotic methods have also been discussed
to analyze the field around the irremovable singular points [20–23]. As the approximation is
indispensable to simplify the diffraction integral, error estimates as well as complex algebra
are required. In parallel, the differentiation-based scheme is also developed in the realm of the
geometric optics. In this scheme, vortex light fields can be decomposed into families of rays
emerging from any cross-section along propagation [24,25]. And the envelope of the ensemble
of rays constitutes the framework of the caustics [24,26]. In this way, a relatively simple and
efficient method without further approximation is available to interpret the caustics of ASVBs
and to predict the focusing properties in real space [27]. However, some clarifications of the
compositions of caustics in real space have not been discussed. In addition, for applications like
microscopy, laser ablation and fabrication of two-photon polymerization, tailoring the caustics
have also been an increasing interest in recent years [28–32]. With a comprehensive understanding
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of the caustics, engineering the caustics of the ASVBs is also an issue of fundamental importance
in applications.

In this paper, we show a developed approach to classify the caustics of different ASVBs. In
Section 2, we firstly introduce the theoretical results as a set of concise expressions developed for
reproducing the caustics of the ASVBs. Comparing with the existing results, these expressions
are obtained without any mathematical approximation. Then, the third Section compares our
theories with the numerical simulations and the experimental results for several exemplary beams,
illustrating the geometries of the vortex caustics. In particular, finer features can be well outlined
in more intuitive physical images as shown in the discussion of the Bessel vortex beam and the
abruptly autofocusing vortex beam, which are absent in previous studies. Furthermore, we also
developed a method to engineer vortex beams with tailored novel tubular caustics based on our
results. Our theoretical results are in excellent agreement with both numerical simulations and
experimental results.

2. Caustics of the ASVBs

2.1. Analytical results

From a given axially symmetric host beam with the phase profile ϕhost (r), the vortex version can
be synthesized by combining the spiral phase ϕvortex (θ) =lθ with ϕhost (r) in any cross-section
along propagation [27]:

ϕ(r, θ) = ϕhost(r) + ϕvortex(θ) = ϕhost(r) + lθ (1)

In geometrical optics, the corresponding radial component of the k vector can be defined as
k·sin γ(r) ≡ –∂ ϕ (r, θ)/ ∂r= –∂ ϕhost /∂r, where k= 2π/λ is the wave number depending on the
wavelength λ [27]. Note that this angle is only related to the host beam. With the parameters N
and V defined as:

N(r) =
√︂

sin2γ + l2/(kr)2

V(r) =
√

N−2 − 1
(2)

we found that the rays emerging from the ring of a specific radius r in the initial transverse plane
z= 0 lie on the hyperboloid [ Fig. 1(a)] specified as:

ρ2

R2 −
(z−zw)

2

L2 = 1 ρ2 = x2 + y2

R = |l|/k
N , L = RV , zw =

V
N

√︂
r2N2 − l2

k2

(3)

where R, L and zw are all dependent on r for a given topological charge l. Moreover, the whole
light field can be represented in geometrical optics as the superposition of ray families lying
on different hyperboloids [Fig. 1(b)], leading to their envelope defined as the caustic of the
synthesized vortex beam from the host field. Here we postulate the existence of the caustic, and
we found that the z positions of the constituent points on the caustic (or the characteristic points
in [27]) are simply the solutions to the equation:

A(z − zw)
2 + B(z − zw) + C = 0

A = (LVN)−2 R′

R , B = zw
′

L2 , C = −R′

R

∆ ≡
√

B2 − 4AC

(4)
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where the prime denotes a derivative with r. Since the Eq. (4) is quadratic, there are two sets of
constituent points (ρ(z1), z1) and (ρ(z2), z2) for each given parameter r:

z1 = zw − B−∆
2A

z2 = zw − B+∆
2A

(5)

Note that the host phase ϕhost (r) is represented by the specific distribution of sin γ(r) through
differentiation. And the introduction of the parameters N and V in Eq. (2) can further facilitate
the understanding on the geometrical image of the vortex beams. One can easily calculate the
complex caustic by substituting (N, V) of a specific host phase into Eqs. (3)–(5). Since no integral
is involved in this procedure, our differentiation-based method is very friendly to implement
without further approximations.

Fig. 1. Schematics of the axially symmetric vortex beams (ASVBs) in geometrical optics:
(a) a single hyperboloid formed by rays emerging from a specific ring in the transverse
plane z= 0; (b) Two different hyperboloids formed by the corresponding families of rays
from the plane z= 0 (the blue and red half tubes), with their intersections with y= 0 plane
(blue and red solid curves) projected into the bottom plane. The intersections between other
hyperboloids and y= 0 plane are also superimposed (gray solid curves). The whole beam
propagates in the z direction.

2.2. Discussions on the topology of the caustics

In this work, we focus on the caustics in real space of an optical setup (z >0) since the beam is
usually generated in such ways. In general, the constituent points of the global caustics of the
ASVBs can be rather complex: either a single set of {z1} (or{z2}) or both sets of {z1} and {z2}
can get involved in constituting the caustic in real space (as will be shown in Section 3.2). After
some algebra, we find that the expression below can well distinguish the above two general cases
in terms of zw:

Both sets: zw>
B+∆·sgn(R′)

2A , z1>0 , z2>0

Single set: zw<
B+∆·sgn(R′)

2A , z2<0<z1 (or z1<0<z2)
(6)

where sgn(R′) is the sign function. Besides, the relative locations of z1 and z2 for a specific host
beam are determined by R′. More details of the cases are summarized in Table 1.
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Table 1. Constituent points in real space (z > 0)

Sign of R′

No. of solution sets
Two sets: {z1 } and {z2 } A single set: {z1 } (or{z2 })

+ 0< z2< z1 z2<0< z1

– 0< z1 < z2 z1<0< z2

3. Numerical and experimental demonstration of the caustics of different AS-
BVs

3.1. Setup

We use the same setup as in [27] to demonstrate our analytical results in section 2. As shown in
Fig. 2, the Gaussian beam centered at 1065 nm from a home-made ultrafast fiber laser is firstly
injected into a beam expander. The output collimated beam with an expanded width of ∼8 mm
is then incident upon a phase-only spatial light modulator (Holoeye SLM-Pluto, 1920×1080
pixels). The exposed power is controlled by adjusting the half-wave plate before a polarizer.
With the phases of the synthesized vortex beams in Table 2 encoded on the SLM together with
an additional grating phase, ASVBs can be generated right after SLM in the first order. Then a
telescope is used to shrink the ASVBs down to the micron-scale. The telescope is built with a
lens (focal length= 1 m) and a microscope objective (50×, NA= 0.8). An iris is installed close to
MO1 to block the undesired orders, retaining the first order of the diffraction lights as shown in
the inset of Fig. 2. An imaging system made of another identical microscope objective (MO2)
followed by a lens (focal length= 0.5 m) is used to capture the intensity profiles at each z position
along beam propagation. The 2D side views of the intensity profiles are then extracted from the
stacked data. Careful alignments only introduce weak perturbation in the setup. This guarantees
that the vortex beams appear with negligible deviation from the ideal caustics.

Fig. 2. Schematic of the experimental setup. HWP: half-wave plate; P: polarizer; BE: beam
expander; SLM: spatial light modulator; L: lenses; MO1 and MO2: microscope objectives.

3.2. Experimental demonstrations

In our previous study on vortex beams hosted by the abruptly autofocusing beams [27], it is
proved that the caustics of their central tube can be well described by the set of constituent points
determined by Eq. (3)-(5). To further demonstrate the universality of our formulae for the whole
family of axially symmetric vortex beams (ASVBs), vortex beams with four additional host
beams, such as Gaussian beams, Bessel beams, Bessel-like beams [33] and parabolic toroidal
lens beams [34] are generated in this work. Table 2 lists their phases and the corresponding sin
γ(r).
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Table 2. Phases of four vortex beams synthesized from specific host beams

Specific ASVBs Applied phase and their sin γ(r): caustics of two simplest cases are given in
the parentheses

Gaussian vortex beam
φ(r, θ) = lθ

sinγ(r) = 0

(︄
z =

ρ2 − (l/k)2

2 |l/k |

)︄
Bessel vortex beam

φ(r, θ) = − k sinγ · r + lθ

sinγ(r) = constant
⎛⎜⎝z ≃

ρ2 sinγ
|l/k |

√︄
ρ2 − (l/k)2

(l/k)2 − ρ2sin2γ

⎞⎟⎠
Bessel-like vortex beam [33]

φ(r, θ) = − k(arn + brm) + lθ

sinγ(r) = narn−1 + mbrm−1

Parabolic vortex toroidal lens [34]
φ(r, θ) = − k(r2 − 2r0r)/2f + lθ

sinγ(r) ≡ (r − r0)/f

According to section 2, the caustics of the ASVBs with a given topological charge l are only
related to the corresponding host phases. Without loss of generality, the topological charge
l is chosen to be l= 5 for this section. Based on the angular spectrum method [35], we also
numerically simulate different ASBVs with parameters corresponding to the setup in Fig. 2. The
simulated and experimental results are shown in Fig. 3, where the measured 2D intensity profiles
are extracted from the 3D data acquired with our setup. For Gaussian vortex beams, the phase
of the host Gaussian beam as well as the corresponding total phase of the ASVB are shown in
Fig. 3(a1) - (a2). The flat phase of the host Gaussian beam results in zw = 0 and B= 0 for any r,
which gives z2 = – z1 with z1 > 0. According to Table 1, the caustic in real space is determined
only by the single set of z1, shown by the blue dash-dotted line in Fig. 3(a3) - (a5). In the second
example, the phases of the host Bessel beam with sin γ(r) ≡ 8.87×10–4 and the corresponding
vortex beam are shown in Fig. 3(b1) - (b2). As Bessel vortex beam determines that R′(r) > 0
and zw < (B+∆) /2A, the sign of z1 and z2 can be solved as z1 > 0 and z2 < 0. In this way, the
caustic in real space is also determined by the single set of z1 as shown in Fig. 3(b3) - (b5)
with the blue dash-dotted line. Besides, the set of (ρ(z1), z1) can be well approximated by the
set of (R(r), zw(r)) for Bessel vortex beams. Comparing with the cylindrical caustic expected
for Bessel vortex beams [23], our solution in Table 2 can well outline the finer features of the
transitionally-expanding tube caustic as shown in [25]. The cylindrical caustic is the special case
where the approximation l/(kr) ≪ sin γ is applied in the expression R(r) in Eq. (3). We stress
here that the analytical results in this paper also address the puzzling correspondence between
the ensemble of the hyperboloidal waists and the central tube caustics of Bessel vortex beams in
our previous study [25].

A family of perfect optical vortices (POVs) are recently designed by integrating the spiral phase
into the phase of the parabolic toroidal lens [34]. This POV with a large range of topological
charge l has a quasi-static focal ring radius r0 at a focal length f. The set of equations determining
the caustics of these beams are too complex in [34], resulting in analytical estimates in two special
cases. Since our analytical results are deduced for any axially symmetric vortex beam without any
further estimate, we also generate one of such beams to demonstrate the validity of our method.
The corresponding beam parameters after the telescope in Table 2 are selected as f = 30µm and
r0 = 7µm. After some algebra, we found the caustic of this specific POV can be decomposed into
multiple sections. When a given r is small enough that zw(r) < [B+∆·sgn(R′)] /2A and R′ > 0,
the single set of z1(r) define the most front section of the caustic [the blue dash-dotted line in
Fig. 3(c3)–(c5)]. As r grows until zw(r) > [B+∆·sgn(R′)] /2A, both the solution sets in Eq. (5)
are involved in forming the caustic: {(ρ(z1), z1(r))} define a tiny part of the caustic very close
to the original focal plane of the host beam [dark blue lines in Fig. 3(c3)-(c5)]; {(ρ(z2), z2(r))}
determine the long opening tube behind, as shown by the green dash-dotted line in Fig. 3(c3)-(c5).
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Fig. 3. The results of different ASVBs with topological charge l= 5. (1)-(2): The phases
of the host beams and the corresponding ASVBs. (3)-(5): The theoretical, numerical and
experimental results for (a) Gaussian vortex beam, (b) Bessel vortex beam and (c) perfect
optical vortex beam generated by parabolic vortex toroidal lens. Light blue dash-dot lines
together with dark blue short lines represent the caustic defined by (ρ(z1), z1). Green
dash-dot lines represent the caustic defined by (ρ(z2), z2). Orange dot lines represent part of
the caustic formed by part of the hyperboloidal surface between (ρ(z1), z1) and (ρ(z2), z2)
occurred in the perfect optical vortex.

The intermediate caustic section [orange dots] in the range of [z1(rmax), z2(rmax)] between the
short dark blue line and the green line is composed by part of the hyperboloid formed by the rays
emerging from the edge of the effective aperture. Besides, when the vortex order is increased,
the section {(ρ(z1), z1(r))} before the focus remains quasi-static and the section {(ρ(z2), z2(r))}
after the focus is shorter. In short, the complex global caustics can be well analyzed with our
method. Our analytical results are in excellent agreement with both numerical simulation and
experimental results.

In addition, our results can well reproduce the deviation of the propagating behavior of the
synthesized vortex beam from that of the corresponding host beam with specific parameters.
The topological charge l is also chosen to be l= 5. Here, we firstly selected the Bessel-like
beam in [33], i.e. a family of shape invariant beams, as the host beam. For specific Bessel-like
beams with a linearly ramped central lobe along propagation, the parameters are selected as
n= 2, m= 1 in Table 2. As for the Bessel-like beams featuring the linearly diverging central lobe,
the parameters are chosen as a= –0.17 m–1, b= 0.0018. With R′ > 0 and zw < (B+∆) /2A, z2
is negative. Therefore, the global caustic is also defined by the single set of z1, shown as the
blue dash-dot lines in Fig. 4(a). For comparison, the central lobe profile of the Bessel-like beam
without the spiral phase is superimposed as the purple line in Fig. 4(a3). It is evident that the
spiral phase further accelerates the divergence along propagation. In the second Bessel-like
beam [shown in Fig. 4(b)], we select the parameters as a= 0.056 m–1 and b= 0.0006 without
changing n and m. Instead, this Bessel-like host beam has a linearly-tapered central lobe along
propagation, presented by the purple line in Fig. 4(b3). Interestingly, the corresponding ASVB
has an extremum on the ring caustic [shown by the single red circle in Fig. 4(b3)] determined by
R′(rextrema)= 0. This behavior is totally different from the monotonous tapering of central lobe
in the host beam along propagation. In fact, this deviation was also observed in our early work
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on abruptly autofocusing vortex (AAFV) beams hosted by the polynomial phase [27]. For such
AAFV beams with specific parameters (for instance, n= 4, a= 0.3×10–4 m–3 and r0 = 1.08 mm
as in [27]), the sets of z1 and z2 are both involved in constituting the global caustics. Besides
the significant deviation of the vortex caustics from the host polynomial trajectories [shown
by the purple line in Fig. 4(c3)], the introduction of the spiral phase into the host beam also
brings the interesting feature: once the local maximum in the waist distribution R(r) exists, an
extremum occurs accordingly on the global caustic despite of the original trajectory of the host
beam as shown in Fig. 4. In short, the analyses based on our method can exactly reproduce the
fine features of the caustic shape. This further demonstrates the validity of our analytical results,
serving as a powerful tool for analyzing the vortex beams.

Fig. 4. Propagating behavior deviation of the ASVBs (l= 5) from their host beams. Bessel-
like vortex beam with parameters: (a) a= –0.17 m–1, b= 0.0018 and (b) a= 0.056 m–1,
b= 0.0006; (c) Abruptly autofocusing vortex beams with: n= 4, a= 0.3×10–4 m−3 and
r0 = 1.08 mm. Purple lines in (a3) and (b3) show the central lobe size of the host Bessel-like
beam without the spiral phase, and the purple line in (c3) represents the host polynomial
trajectory. Blue dash-dot lines represent the caustic defined by (ρ(z1), z1) and green dash-dot
lines represent the caustic defined by (ρ(z2), z2). Orange dot lines in (c1) - (c3) represent
part of the caustic formed by part of the hyperboloidal surface between (ρ(z1), z1) and (ρ(z2),
z2) like the perfect optical vortex. Insets of (b3) and (c3) show zoomed extrema points.

4. Engineering the caustics of the ASVBs in the paraxial optics

Previous sections show how to calculate the caustics of the ASVBs from the their phases ϕ(r,θ).
With the help of the caustic expressions, we also demonstrate that the propagation behavior of
the ASVBs can deviate significantly from that of the corresponding host beams due to the spiral
phase. Therefore, a challenge arises here that the host beams cannot always well predict the tube
shape of their vortex “brother” beams.

In fact, the inverse problem of tailoring the caustic by an engineered host phase is more
interesting. The target profile ρ(z)= c(z) can be engineered by solving the host phase ϕhost(r)
from zcaustic (r) =c–1(z) based on Eq. (4) and (5). However, this usually involves a mathematical
challenge. Here, we clarify a fundamental limit and show the possibility of tailoring the tube
shape based on our results with two preconditions. Since travelling waves are generated in
numerous applications, this leads to a fundamental requirement that the topological charge l
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should not be very large within the radial contents of the beam, i.e. |l|≤ kr | cos γ(r)|. In practice,
paraxial optics are adopted in most cases, requiring that tan γ(r)≃sin γ(r). If we further focus on
the ASVBs with the azimuthal components of k vector much smaller than the corresponding
radial components, we found r ≫ |–l /ϕ′(r,θ)| and sin2γ(r)+ [l/(kr)]2 ≃ sin2γ(r). With these
preconditions implemented in Eqs. (4) and (5), the tubular caustic can be well approximated as:

z ≃ r/tan γ ≃ r/sin γ = −kr/ϕ′host(r)

ρ = −|l|/ϕ′host(r)
(7)

The ϕhost (r) can be solved by substituting the target caustic profiles ρ(z)= c(z) into Eq. (7) with
the help of the computer. To demonstrate the validity of our method, several exemplary ASVBs
with tailored tubular profiles after the telescope can be generated in our setup. The target profiles
and the specific parameters of these beams are listed in Table 3. All the measured caustics present
excellent agreements with the corresponding tailored profiles as shown in Fig. 5.

Fig. 5. Synthesized vortex beams of different vortex orders with: (a) quartic, (b) logarithmic,
(c) parabolic and (d) exponential tubular profiles and tailored parameters listed in Table 3.
The blue dash dotted lines represent the pre-engineered target caustics. The caustic profiles
extracted from the simulation and experiments shown in the third column are all defined as
in [27].

In addition, two exemplary ASVBs with l= 6 are pre-engineered and shown in Fig. 6, presenting
one beam carrying an opening central tube profile ρ(z)= a+ bz with a= 2µm, b= 0.058 [Fig. 6(a)]
and the other with a tapered central tube profile ρ(z)= a – bz with a= 5µm, b= 0.058 [Fig. 6(b)].
By inserting Eq. (7) into the above target tube profiles, the engineered phase can be readily
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Table 3. Target profiles ρ(z)=c(z) of different shapes

Types of profiles The target profiles and parameters after the telescope

Quartic
ρ(z) = a(z − z0)

4 + b

a = 6 × 1012m−3, z0 = 20µm, b = 1µm

Logarithmic
ρ(z) = alog2(z + b) + c

a = 0.2, b = 1µm, b = 0.5µm

Parabolic
ρ(z) = a(z − z0)

2 + b

a = −9 × 102m−1, z0 = 50µm, b = 2.5µm

Exponential
ρ(z) = aexp[b(z − z0)] + c

a = 1, z0 = 20µm, b = 5 × 104m−1, c = 1.5µm

Fig. 6. Numerical simulations and experimental results of several particular examples
with the tunable hollow core radius. (a) ρ= a+ bz with a= 2µm, b= 0.058; (b) ρ= a – bz
with a= 5µm, b= 0.058 and (c) ρ= a – bz with a= 4µm, b= 0.038. SLMs with a smaller
(7mm×7 mm) and a larger (12mm×12 mm) area are adopted in the simulation in (b4) and
(b5), respectively. The blue dash dotted lines represent the pre-engineered target caustics.
The caustic profiles extracted from the simulation and experiments shown in the third column
are all defined as in [27].
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obtained as ϕhost (r)= –(|l|/a)r± r2bk/ (2a). The blue solid lines represent the pre-determined
caustics ρ(z). Figure 6(a3) and Fig. 6(b3) also present the simulated and measured tube profiles.
The discrepancies from the target tapered profile in Fig. 6(b) mainly originate from the limited
active aperture on the SLM (8.64mm×8.64 mm). This is proved by simulating the same beam with
SLMs of different areas, where the larger active area (12mm×12 mm) allows a better agreement
with the predefined geometry [Fig. 6(b5)]. Despite that such a large SLM is unavailable in our
experiment, this distortion can be corrected in tailored caustics with a smaller initial ring and a
less steep taper (a= 4µm, b= 0.038) as shown in Fig. 6(c).

5. Conclusion

In this paper, we demonstrate that the set of analytical equations developed in our previous study
on the caustics of the abruptly autofocusing vortex beams [27] have a wider universality to well
reproduce the caustics of the axially symmetric vortex beams. Based on a couple of vortex beams
synthesized from different host beams, the universality is proved by the excellent agreements of
our theory with the numerical and experimental results. Features of the vortex caustics can also
be well addressed with our theoretical methods, including the components of the global caustics
and the deviation of the vortex caustics from the host caustics. Besides, we have also shown that
it is possible to pre-engineer the vortex caustics based on our theory in the paraxial regime where
the polarization components can be decoupled. Interesting opportunities also arise for extending
our work to the nonparaxial regime. We expect that these results will promote the development
of numerous applications, such as material processing, microscopy, particle micromanipulation
and synthesis of novel electro-magnetic wavepackets [36,37]. Also, the structural stability of the
different solutions in the nonlinear regime can represent interesting future work.
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